
Scorewriter application with features aimed at
Byzantine music processing

Petru Dimitriu
Faculty of Automatic Control and

Computer Engineering
Technical University of Iași

Iași, Romania
dimitriupetru@gmail.com

Vasile-Ion Manta
Faculty of Automatic Control and

Computer Engineering
Technical University of Iași

Iași, Romania
vmanta@cs.tuiasi.ro

Abstract—Byzantine music represents a vast and complex
musical tradition which precedes contemporary Western music.
Nowadays, it is used mostly within Eastern Christian churches.
Few computer software applications deal with Byzantine music and
the imperfect command of Byzantine music theory among singers
often requires parallel classical notation staves. A software
application written in C++ has been written, which enables the user
to write simple musical scores using standard notation, as well as
Byzantine music compositions using a subset of the specific
Byzantine notation. The application can be used to produce
transcriptions of Byzantine-notation compositions into their
classical notation counterparts. Extensive data structures and
algorithms for containing and manipulating the data, as well as
interacting with the computer user, have been developed.
Additionally, the application offers some serialization capabilities,
as well as preliminary support for pitch tracking. By offering the
functionality described above, the application is an example of
modern technology being used to preserve cultural heritage.

Keywords—software applications, educational applications,
music typesetting

I. INTRODUCTION

In the geographical areas where the former Byzantine
empire has historically exerted extensive cultural influence, the
prevalence of Byzantine music as church music has been one
of the defining traits of the later resulting nations. Featuring a
set of four octaves and eight modes, Byzantine music draws its
roots to the mathematical discipline of music theory as it had
been formulated during the Hellenic period and subsequently
reformed by the Syrian polymath John Damascene and
others [1]. Notably, Byzantine music also features a distinctive
musical notation, which, unlike the classical Western notation
with a staff, clefs and notes, has a more relative approach to
expressing the melodic motion and employs a set of signs
called neumes, which succeed and combine with one another to
express the melody's tones, nuances and temporal features.
Three main sets of signs are the vocalic, temporal, consonant
signs. Other sets are used to establish the scale or the base tone,
tempo etc. Byzantine music is employed as one of the main
musical traditions in the Eastern Orthodox church.

Though originally developed exclusively in an
ecclesiastical context, Byzantine notation in its contemporary
form has proven its versatility in also being used to write
secular music, with the Romanian composer Anton Pann's
collections of Romanian-language Balkan folk songs of the 18th

and 19th century such as Spitalul amorului sau Cântecul
dorului serve as examples in this sense [2]. Even so, Byzantine

notation is known by few people aside from Orthodox church
chanters and many contemporary church hymn books present
the hymns in both Byzantine and Western notations, in parallel.

As [2] notes, transcribing between Byzantine and Western
notation is often problematic as there is no exact standard
notation that can convey the musical embellishments found in
Byzantine music. Nevertheless, an approximate transcription is
necessary in many cases, as singers often cannot rely on their
knowledge of the Byzantine notation, if at all.

Few computer software applications tackle Byzantine
music, one of the most popular of those being the
Greek-language Chrisos Melodos [3]. To the best of our
knowledge, there is no public software application that can
perform Byzantine-to-Western score transcription. We
proceeded to designing such an application, by writing a
computer program for the Linux operating system which
supports writing simple standard and Byzantine notation
compositions and partial transcription of Byzantine
compositions to their approximate classical counterparts.

The remaining of this paper is organised as follows: In
Section II the objectives that had been taken into consideration
in the development of the application are established and the
choice of resources is presented and explained. Section III is a
description of the data structures used to encapsulate the data
and information pertaining to the musical scores that the
application manipulates. Section IV discusses the
implementation of the user interface components which handle
the drawing of the musical compositions and interaction with
the user, providing algorithms in the form of pseudocode.
Section V expands on the process of conversion between
Byzantine and classical notation, explaining the algorithm that
has been devised for this purpose. In Section VI the file format
used by the application to store classical compositions is
detailed. Section VII concentrates on the pitch-tracking
component of the application and explains the mathematical
formulae that is used to determine the musical note that
corresponds to a certain sound frequency. Finally, Section VIII
concludes the paper with considerations on the resulting
software application and its usability.

II. APPLICATION OVERVIEW AND OBJECTIVES

A. Resources

The application was written in the C++ programming
language under the Ubuntu Linux operating system, using

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 385

CLion as an Integrated Development Environment and the
GNU C Compiler (GCC).

The following third-party libraries have been used:

 wxWidgets 3.0.4, a framework for designing the user
interface (UI);

 Fluidsynth 1.1.9, a real-time software synthesizer
based on the SoundFont 2 specifications;

 PortAudio 19, an audio input/output library used for
live acquisition of audio from the microphone.

All the third-party libraries feature free software licences
and are cross-platform, which means that compilation on a
different platform is possible with little or no modifications in
code, resulting in a software application with the same
functionality and behaviour across different operating systems.

For the purpose of pitch-tracking, the code at [4] has been
used and modified to fit the needs of the application.

Fluidsynth requires a soundfont file in order to synthesize
sounds. The free GeneralUser GS soundfont, available at [5],
was used.

Additionally, for the display of Byzantine signs, the EZ
Fonts True Type font package edited by the Saint Anthony's
Greek Orthodox Monastery in Florence, Arizona, United
States, has been used [6]. It has the advantage of providing a
simple method for displaying Byzantine signs, by simply
drawing plain text. Moreover, since the fonts are TrueType
fonts, they are naturally scalable.

B. Capabilities

As of the date of the writing of this paper, the software
application supports:

 composing and displaying standard musical scores
featuring simple notes or chords, which can also have
lyrics;

 composing and displaying Byzantine musical scores
featuring a subset of vocalic, temporal and ornamental
signs but no other signs;

 storing and retrieving composed standard-staff songs
in/from files;

 transcribing Byzantine compositions into their
approximate Western notation counterparts,
highlighting the correspondence between groups of
vocalic characters and their Western staff notes;

 playing the compositions through the third-party
synthesizer library;

 live detection of sung notes using the third-party audio
I/O library.

As far as Byzantine music support is concerned, we
currently assume that the compositions are written in the eighth
church tone (instead of supporting the full tone palette), which
has its base tone on C and its musical scale (octave)
corresponding to the Western major scales [1].

C. General design approach

The design of the application followed a mostly bottom-up
approach, beginning with the design of the data structures that
hold the information and programmatic methods related to
musical elements and continuing with the user interface.

Generally, the application source code defines:

 data structures for the standard and Byzantine scores,
respectively;

 custom widgets (UI controls) for displaying musical
scores and interacting with the user;

 UI windows employing the widgets above;

 live audio data processing;

 interacting with the synthesizer library.

The data structures and the custom widgets that display and
interact with them can be viewed as the Model and View parts,
respectively, of a Model-View-Controller (MVC) design
pattern, where the wxWidgets framework, through its event
handling infrastructure, acts as the Controller.

III. DATA STRUCTURES

The data structures that implement the internal
programmatic representation of the two types of scores is
designed as a group of C++ classes with specific purpose.

A. Standard score

The standard (Western) score data structures assume a
representation of the score as a sequence of chords, each of
which are comprised of an optional lyric fragment along with
zero, one or more individual notes.

The Note C++ class represents a single standard musical
note and is comprised of the real double-precision number of
tones away from the C0 musical note, the length of the note
expressed as a real double-precision number expressed in beats
(quarters) and a set of flags which can determine, for instance,
whether the note features musical embellishments. It offers
various methods in order to construct notes and alter notes, for
instance, to create a note by specifying the name of the note
(via a #define C++ preprocessor directive) and the octave, and
to change the pitch by a certain number of tones.

The Chord class generally represents a chord, which is a
group of notes that are sung/played together. It contains a
vector from the Standard Template Library, (STL) of Note
instances, an STL wide-character string (wstring) containing
the corresponding lyric fragment, if any, and a set of flags
which can be used, for instance, to mark that the Chord
instance defines a rest.

The Score class represents a standard (Western) musical
score which contains a list of chords (Chord instances) which
comprise it, along with other settings such as the title of the
composition and the tempo expressed in beats per minute. The
GroupedScore class is an extension of the Score class which
features a list of pairs of indices which divide the score into
groups of chords. This is useful in order to easily realize and

386

display the correspondence between a classical score fragment
and its Byzantine counterpart.

The ScoreIO namespace contains methods which perform
the serialization and de-serialization of the contents of the
Score class instances to/from external files.

B. Byzantine score

In the design for the data structures for Byzantine scores it
is assumed for now, for simplicity, that the song is always
composed in the eighth tone, starting on the initial note C4.

The ByzantineSign class represents a simple or composite
vocalic character, along with any auxiliary sign drawn above or
below it. These fields are represented as wide characters
(wchar_t) which correspond to the Unicode characters assigned
to the respective signs in the EZ Psaltica font.

The ByzantineScore class represents a Byzantine musical
score, containing an STL vector of signs (instances of
ByzantineSign). It also implements a method to convert a
Byzantine score into a Western score (an instance of
GroupedScore).

IV. CUSTOM UI CONTROLS

In order to enable the user to interact with the data
structures presented above and to properly display them on the
screen, a set of special custom user interface controls had to be
designed. These controls act as the View component of the
MVC pattern discussed above.

Following the guidelines of the wxWidgets UI framework,
they are implemented as classes derived from the
framework-provided wxPanel and wxFrame classes. The
operation of the custom controls is detailed in this section.

A. Standard score

The class that handles the displaying of Western scores has
been called wxScoreControl, as seen in Figure 1. It contains a
pointer to the Score instance that it manipulates and displays,
and another pointer to a hidden Score instance that acts as a
clipboard. The custom control is capable of laying out the song
it represents either on a single row or on multiple staff rows.

It implements basic event handlers in order to react when
the user interacts with the control such as by hovering the
mouse pointer above the control or clicking on it. Since the full

contents will often be impossible to display, the control offers
scrollbars that the user can use to adjust the viewing window;
this requires that all coordinates of the objects within the
control are always translated according to the scrolling
coordinates.

1) The build phase
The painting process involves two main subprocesses. The

first one, the build phase, involves linearly iterating through the
list of Chord instances in the Score class and constructing an
auxiliary data structure for each, which will contain specific
information on how to draw the respective element. The
general approach used in the build procedure is displayed in the
form of pseudocode in Figure 2. It is only employed whenever
a change that affects the layout of chords in the score occurs.
This specific information is contained in instances of the
Drawable class or one of its specialized derived classes, as it
can be seen in Figure 1.

The common fields of the Drawable instances are the
absolute coordinates of the rectangle that contains the drawable
elements, which are highlighted whenever the user hovers the
mouse pointer over and the user can click in order to select the
respective elements. These coordinates are set during the build
phase according to the type of the Drawable instance and
according to whether it has extra signs, such as accidentals or
embellishments, in the case of chords.

Each DrawableChord instance additionally contains a
pointer to the corresponding Chord instance, the two integer
extremities of the line of the drawn chord and a vector of the
integer vertical positions of the dots belonging to the notes that
comprise the chord. A number of programmatic flags determine
whether the chord should have its stem drawn upwards or
downwards.

Figure 2: Pseudocode of the general approach of the build procedure

procedure build():
 clear drawablesList;
 rowIndex ← 0;
 xRelativeInsideStaff ← xInitialOffset [in pixels];
 if scoreControl is not wrapped then:
 maxControlWidth ← ∞
 else:
 maxControlWidth ← scoreControl.width
 create Drawable instances for first two G- and F-clefs;
 append them to drawableList;
 for each Chord c in score:
 if c is a rest then:

 drawable ← new DrawableRest;
 set drawable.innerRectangle.x according to
 xRelativeInsideStaff;
 set drawable.innerRectangle.y according to rowIndex
 else:
 drawable ← new DrawableChord
 for each Note n in c:
 determine whether n has accidental etc;
 if n is between F3 and A3 or above B4 then:
 stem should be pointing up for chord c;
 determine vertical position of notehead within staff
 and store it in drawable;
 determine and load number of flags;
 if both current and previous chords have flags and it is
 feasible to join them then:
 set a flag for drawable of current and previous
 chords to signify that their flags should be drawn as
 beams instead;
 <other operations>
 calculate and store position and dimensions for
 drawable.innerRectangle in order to contain all notes in c
 append drawable to drawableList
 xRelativeInsideStaff ← drawable.innerRectangle.width +
 spaceBetweenChords + xRelativeInsideStaff

 if xRelativeInsideStaff > maxWidth then:
 xRelativeInsideStaff ← xInitialOffset
 rowIndex ← rowIndex + 1

Figure 1: UML diagram of the classes related to Western score data processing

Note

Chord

Score

GroupedScore

wxScoreControl

Drawable

DrawablePlayable

DrawableRest DrawableChord

1..*

1

0..*

1

1

2

387

The build phase begins by creating an empty list of
Drawable instances and adding two Drawable instances for the
first two G- and F-clefs, respectively. The computation of the
positions of the chords on this first row follows. The drawable
elements for the G-clef and F-clef are the first two elements
that are inserted into the vector of Drawable instances.

As the iteration through all the Chord instances contained
in the Score instance progresses and positions for the chords
and notes are successively generated, the horizontal positions
of the newly-generated drawable elements are tracked in an
internal variable xRelativeInsideStaff. If the elements no longer
fit horizontally in the current viewport, then a new staff row is
created (an internal variable is incremented and its
corresponding clefs are added to the vector of Drawable
instances) and xRelativeInsideStaff is reset.

In order to achieve a correct display of musical notes, the
durations and pitches of the chords are also kept track of. If any
note in a chord is higher or equal to B4 or between F3 and A3,
then the stem of the chord will be drawn downwards. If two
chords on the same staff whose duration is lesser than a quarter
have the same duration and their stems are pointing in the same
direction, the stems will be united with a beam instead of
having flag symbols drawn.

Finally, the build method computes the difference between
the maximum extent of the drawn elements and the actual
dimensions of the viewport and displays, hides or updates the
attached scrollbars, if any, accordingly.

The build method is only called when a chord is added,
removed or modified or the dimensions of the viewport are
changed and the a new layout must be generated.

2) The paint phase
The paint phase, briefly explained in Figure 4, follows the

build phase but is called whenever the user interacts with the
control in any way. It involves iterating through the list of
Drawable instances pre-generated during a previous build
phase and applying a drawing approach specific to each
Drawable type. The information in the Drawable instances
allows this subprocess to also enjoy linear complexity. In order
to draw shapes such as dots, flags and accidentals, a set of pre-
loaded raster bitmap images are used.

Apart from the actual drawing of the musical elements, the
paint phase also handles the filling of rectangles that contain
the staff elements with specific colours for the situation when
the chords are hovered, selected or highlighted, as in Figure 3.

B. Byzantine score

In the case of displaying the Byzantine score, the
wxByzantineScoreControl class (seen in Figure 5) has been
written for the purpose. Its functioning is similar to that of

wxScoreControl and it makes use of a class named
DrawableByzantineSign to contain the necessary information
generated during the homologue build subprocess and used for
display in the homologue paint subprocess. The classes related
to the Byzantine score data processing are explained
diagrammatically in Figure 6.

Using the EZ font package eases the process of representing
neumes internally, as for each sign there is a one-to-one
correspondence to a Unicode character in the font. The paint
subprocess simply draws the text contained in the specific data
structures. As such, in the case, DrawableByzantineSign
instances only contain the rectangle coordinates and a pointer
to the ByzantineSign instance that they represent. Moreover, the
characters in the EZ package are designed in such a way that
modifier signs will be correctly placed relative to their base
signs, in a similar manner to the correct placement of the
isolated letter accents above (and not besides) the
corresponding preceding letters in regular fonts.

V. BYZANTINE TO CLASSICAL NOTATION CONVERSION

A method to convert scores contained in ByzantineScore
instance to Western Score instances has been implemented by
the authors in the ByzantineScore class. It produces an instance
of the GroupedScore class.

The conversion procedure, explained briefly in Figure 7
involves two steps. The first step is a linear parsing of the

Figure 4: Pseudocode of the general approach of the paint procedure

procedure paint():
 initialize drawing canvas dc;
 set background color of dc to white; clear background;
 for each i in [0,numberOfRows]:
 draw 5 hotizontal lines, representing the staff
 for each Drawable d in drawableList:
 if d.innerRectangle is outside of control viewport then
 skip iteration
 if d is hovered then:
 fill within the bounds of d.innerRectangle with the hover
 specific colour
 if d is selected then:
 fill within the bounds of d.innerRectangle with the selection
 specific colour
 if d is DrawableChord then:
 for each note in the Chord referred by d:
 draw its notehead with associated accidental, if any
 draw stem using data in d
 if chord referred has flags then:
 if flags should be drawn then:
 draw flags
 else:
 if previous chord can join flags with current one then:
 draw beams between current and previous;
 else:
 store index of current chord until its pair is found
 <other operations>

Figure 6: UML diagram of classes pertaining to Byzantine score data processing

ByzantineSign

ByzantineScore

wxByzantineScoreControl

DrawableByzantineSign

0..*

1

1

2

0..*

1

Figure 3. Screenshot of the standard score control. Two selected
chords (with green background), one hovered chord (with gray
background) and a chord containing two notes can be observed.

Figure 5: Screenshot of the Byzantine score control, with three groups of
signs selected. The red signs, from left to right are a temporal and a

consonant sign, respectively.

388

vocalic characters in the ByzantineScore instance. For each
vocalic character, the corresponding note, or notes, are
immediately added to the GroupedScore instance, along with a
pair of indexes defining the group containing it. The effect of
some temporal signs is introduced now.

The effect of each group of neumes builds up on the
musical tone generated by the preceding neumes. The effect of
some of the neumes, as implemented in the application, follows
the guidelines traced by [1] and [2], and is exemplified in
Table I.

TABLE I. EXAMPLES OF BYZANTINE NOTATION CHARACTERS

Shape of Byzantine
character

Meaning

0 maintains current step, unaccented

p maintains current step, accented

w 2 steps up, accented

o 1 step up, then two other successive steps up

) 1 step down, then another step down

 Subsequently, the list of Byzantine signs is parsed again
from first to last, in order to apply the effect of the temporal or
consonant signs which affect more than one vocalic character,
such as digorgon, whose usual action spans three vocalic
characters, generating a triolet [3]. If a group of notes in the
resulting GroupedScore instance needs to be adjusted in terms
of the number of notes it contains, then all the groups (pairs of

indexes) following the adjusted group need to be adjusted as
well, rendering this process with quadratic time complexity.

The correspondence established through the groups in the
GroupedScore instance enables the user to immediately
visualize the correspondence between the two notational
systems, as seen in Figure 8.

VI. CLASSICAL NOTATION SCORE FILE I/O

The ScoreIO namespace mentioned above implements
linear methods to write and read classical-notation score data
to/from external files. The format used is both human and
machine readable. It consists of a UTF-8 encoded text file with
a number of single-line statements, as explained in Table II.

TABLE II. SCORE FILE FORMAT

Line contents Example Effect

i <integer> i 0

Sets a musical instrument for the
score; the musical instrument will
be used to play the song using a
synthesizer

t <integer> t 80
Sets the tempo for the composition,
expressed in beats per minute

n <string> n My song Sets a title for the composition

C <real> <real>
[<string>]

C 29.5 0.25
Hello

Defines a chord, with the pitch
defined by the first real number as
the amount of tones away from C0

and the duration defined by the
second real number as a fraction of
a whole note, with an optional lyric
fragment at the end

VII. LIVE PITCH TRACKING

The application also features pitch tracking capabilities, by
employing an implementation of the Fast Fourier Transform
(FFT) algorithm applied to live data streamed using the
PortAudio library, as explained at [4], with a sample rate of
8192 samples per second and a FFT window of 4096 samples.
After the greatest amplitude is determined linearly, the musical
note corresponding most closely to the determined value is
determined.

In music, an interval represents the ratio between two sonic
frequencies. When the frequency of a note is equal to the
double of the frequency of another note, the musical interval
between the two notes is called an octave.

Musical scales divide octaves into a number of intervals,
whose number is usually eight, hence the name. The division
points are the notes that are usually used in composition. In the
English notation, the names of the notes ordered by their pitch
in ascending order are: C, D, E, F, G, A, B.

The common musical interval called tone represents one
sixth of an octave. A semitone is equal to one twelfth of an
octave. In equally-tempered scales, the interval between each
consecutive pair of steps is equal to 21/12

≈1.05946 .

The application stores in memory the frequencies in Hz for
all notes from C-1 to C8 with a step of one semitone in a table
for fast lookup.

Figure 8: Screenshot of a Byzantine score and the classic score
generated from it. Highlighting a group of neumes on the Byzantine

staff causes the corresponding notes on the classic staff to be
highlighted.

Figure 7: Pseudocode of the Byzantine-to-classical conversion function

function ConvertToClassical(ByzantineScore byzScore):
 resultScore ← new empty GroupedScore;
 currentNote ← Note(C4);
 for each ByzantineSign sign in byzScore:
 append one or more notes to resultScore, according to kind
 of sign using currentNote as reference;
 currentNote ← last appended note;
 set the limits of a new group in resultScore, which will
 contain the notes added in this iteration;

 for each ByzantineSign sign in byzScore:
 i ← index of sign (and of corresponding group in resultScore)
 for each temporal or consonant sign attached to sign :
 perform required changes (alter duration, add accent etc)
 if new notes have been inserted in the process then:
 alter indexes of the group #i accordingly

for each remaining group in resultScore :
 update indexes of group accordingly

 return resultScore ;

389

Given that A4 has its frequency conventionally set at
exactly 440Hz by the ISO 16 standard, we can further devise a
mathematical formula that can be used to compute the
frequency of any musical note in an equally-tempered scale.

Let f A 4=440 Hz be the frequency of A4.

We can then compute the frequency of C4 by taking into
account that the interval between C4 and A4 is 9 descending
semitones. Thus, the frequency of C4 is:

f C 4= f A4⋅2−9 /12 .

In order to find the frequency of C-1, which is 5 octaves
lower than C4, we divide the frequency of C4 by 25:

f C−1= f A 4⋅2−9 /12
⋅2−5 .

We can now compute the frequency of any musical note n
by employing the following formula:

f n= f C−1⋅2s
≈8.17579⋅2s ,

where s is the number of semitones between C-1 and the
note whose frequency we seek to compute.

VIII. RESULTS AND CONCLUSION

The resulting application successfully performs the
operations described in Section II, featuring a window for
working with Western scores, one for working with Byzantine
scores and one for the live detection of pitch. The first two
windows allow playing the score being worked on, while
highlighting notes as they are being played.

Within the window used for working with Byzantine
compositions, the capabilities of the Byzantine-to-Western
conversion methods are leveraged, by providing a live
transcription of the Byzantine composition currently being
worked on. Playing the Byzantine composition will highlight
both the neumes on the Byzantine staff and the notes on the
corresponding classic staff as they are played.

Live pitch-tracking is used in a module of the application
which requires the user to sing a number of notes displayed on
a staff. As the user successfully reaches the notes, the next note
to be sung is highlighted on the score.

These applications of the modules described above prove
the practical and educational potential of the application. The
application could be used as a self-teaching tool for acquiring
theoretical and practical knowledge of both classic and
Byzantine music. By making Byzantine music more accessible
and easier to employ, the application could, thus, contribute to
the better conservation of cultural heritage by the use of
modern technology.

REFERENCES

[1] Panțiru, G. "Notația și ehurile muzicii bizantine". Bucharest, Editura
Muzicală a Uniunii Compozitorilor, 1971, pp.68–73.

[2] Pann, A., Ciobanu G. (coord.) "Cântece de lume", Bucharest, Romania,
Editura de Stat pentru Literatură și Artă, 1955, pp. 26–77

[3] "ΒΥΖΑΝΤΙΝΗ ΜΟΥΣΙΚΗ, ΙΣΟΚΡΑΤΗΣ, OCR ΜΟΥΣΙΚΟ, OCR
ΠΟΛΥΤΟΝΙΚΟ, ΠΑΡΑΔΟΣΙΑΚΗ ΜΟΥΣΙΚΗ, ΒΥΖΑΝΤΙΝΑ
ΜΟΥΣΙΚΑ ΒΙΒΛΙΑ, MUSIC COMPOSER, MELODOS, θέσεις
εργασίας Πτολεμαιδα, OCR polytonic, music OCR, Tradition music"
[Online], http://www.melodos.com/. Accessed 16th May 2018.

[4] Roche, B., "Frequency detection using the FFT (aka pitch tracking) With
Source Code" [Online], http://blog.bjornroche.com/2012/07/frequency-
detection-using-fft-aka-pitch.html, Accessed 16th May 2018

[5] "SountFonts and SFZ files" [Online]
https://musescore.org/en/handbook/soundfonts-and-sfz-
files#gm_soundfonts Accessed 16th May 2018

[6] "Byzantine Music Notation - Βυζαντινή Μουσική" [Online],
http://www.stanthonysmonastery.org/music/ByzMusicFonts.html,
Accessed 16th May 2018.

[7] Urmă, D., "Acustică și muzică". Bucharest, Editura Științifică și
Enciclopedică, 1982, pp. 12-52

Figure 9: Screenshot of the built application

390

